Well it appears there are two SPI buses on the ESP32WROOM evoked through the libraries the example code of SPI_MULTIPLE_BUSES.ino, which header reads:
/* The ESP32 has four SPi buses, however as of right now only two of
-
them are available to use, HSPI and VSPI. Simply using the SPI API
-
as illustrated in Arduino examples will use VSPI, leaving HSPI unused.
-
However if we simply intialise two instance of the SPI class for both
-
of these buses both can be used. However when just using these the Arduino
-
way only will actually be outputting at a time.
-
Logic analyser capture is in the same folder as this example as
-
“multiple_bus_output.png”
-
created 30/04/2018 by Alistair Symonds
*/
Which states the default pins for vspi are SCLK = 18, MISO = 19, MOSI = 23, SS = 5 and Hspi are SCLK = 14, MISO = 12, MOSI = 13, SS = 15, which still confuses the matter when one uses the code below… which SPI is being called? in #include <SPI.h>?
Oh and by the way from another post I found out that GPIO12 is off limits during loading code into the ESP32 Thing Plus because it causes a memory failure, so I am hoping you answer it’s the v_spi configuration as default.
Edited by moderator to add code tags.
------------------------------------------CODE EXAMPLE from the RFM69 -----------------------------------------------------------------------------
// Uses the RFM69 library by Felix Rusu, LowPowerLab.com
// Original library: https://www.github.com/lowpowerlab/rfm69
// SparkFun repository: https://github.com/sparkfun/RFM69HCW_Breakout
// Include the RFM69 and SPI libraries:
#include <RFM69.h>
#include <SPI.h>
// Addresses for this node. CHANGE THESE FOR EACH NODE!
#define NETWORKID 0 // Must be the same for all nodes (0 to 255)
#define MYNODEID 1 // My node ID (0 to 255)
#define TONODEID 2 // Destination node ID (0 to 254, 255 = broadcast)
// RFM69 frequency, uncomment the frequency of your module:
#define FREQUENCY RF69_433MHZ
//#define FREQUENCY RF69_915MHZ
// AES encryption (or not):
#define ENCRYPT true // Set to "true" to use encryption
#define ENCRYPTKEY "TOPSECRETPASSWRD" // Use the same 16-byte key on all nodes
// Use ACKnowledge when sending messages (or not):
#define USEACK true // Request ACKs or not
// Packet sent/received indicator LED (optional):
#define LED 13 // LED positive pin
#define GND 25 // LED ground pin
// Create a library object for our RFM69HCW module:
RFM69 radio;
void setup()
{
// Open a serial port so we can send keystrokes to the module:
Serial.begin(115200);
Serial.print("Node ");
Serial.print(MYNODEID,DEC);
Serial.println(" ready");
// Set up the indicator LED (optional):
pinMode(LED,OUTPUT);
digitalWrite(LED,LOW);
pinMode(GND,OUTPUT);
digitalWrite(GND,LOW);
// Initialize the RFM69HCW:
radio.initialize(FREQUENCY, MYNODEID, NETWORKID);
radio.setHighPower(); // Always use this for RFM69HCW
// Turn on encryption if desired:
if (ENCRYPT)
radio.encrypt(ENCRYPTKEY);
}
void loop()
{
// Set up a "buffer" for characters that we'll send:
static char sendbuffer[62];
static int sendlength = 0;
digitalWrite(GND,LOW);
digitalWrite(GND,HIGH);
delay(1000);
digitalWrite(GND,LOW);
// SENDING
// In this section, we'll gather serial characters and
// send them to the other node if we (1) get a carriage return,
// or (2) the buffer is full (61 characters).
// If there is any serial input, add it to the buffer:
if (Serial.available() > 0)
{
char input = Serial.read();
if (input != '\r') // not a carriage return
{
sendbuffer[sendlength] = input;
sendlength++;
}
// If the input is a carriage return, or the buffer is full:
if ((input == '\r') || (sendlength == 61)) // CR or buffer full
{
// Send the packet!
Serial.print("sending to node ");
Serial.print(TONODEID, DEC);
Serial.print(": [");
for (byte i = 0; i < sendlength; i++)
Serial.print(sendbuffer[i]);
Serial.println("]");
// There are two ways to send packets. If you want
// acknowledgements, use sendWithRetry():
if (USEACK)
{
if (radio.sendWithRetry(TONODEID, sendbuffer, sendlength))
Serial.println("ACK received!");
else
Serial.println("no ACK received :(");
}
// If you don't need acknowledgements, just use send():
else // don't use ACK
{
radio.send(TONODEID, sendbuffer, sendlength);
}
sendlength = 0; // reset the packet
Blink(LED,10);
}
}
// RECEIVING
// In this section, we'll check with the RFM69HCW to see
// if it has received any packets:
if (radio.receiveDone()) // Got one!
{
// Print out the information:
Serial.print("received from node ");
Serial.print(radio.SENDERID, DEC);
Serial.print(": [");
// The actual message is contained in the DATA array,
// and is DATALEN bytes in size:
for (byte i = 0; i < radio.DATALEN; i++)
Serial.print((char)radio.DATA[i]);
// RSSI is the "Receive Signal Strength Indicator",
// smaller numbers mean higher power.
Serial.print("], RSSI ");
Serial.println(radio.RSSI);
// Send an ACK if requested.
// (You don't need this code if you're not using ACKs.)
if (radio.ACKRequested())
{
radio.sendACK();
Serial.println("ACK sent");
}
Blink(LED,10);
}
}
void Blink(byte PIN, int DELAY_MS)
// Blink an LED for a given number of ms
{
digitalWrite(PIN,HIGH);
delay(DELAY_MS);
digitalWrite(PIN,LOW);
}